Requisitos de admisión para ingresar a la maestría

- Ser egresado de alguna licenciatura o ingeniería en área afín a la maestría.
- Acreditación del examen de admisión a la maestría o curso propedéutico.
- Constancia de Inglés TOEFL Score Report con mínimo 400 puntos (o equivalente).
- Entrevista con los miembros del Consejo de Posgrado a los alumnos que acreditaron el examen de admisión o el curso propedéutico.
- Contar con un promedio mínimo de 80 /100 o equivalente en sus estudios anteriores.
- Documentos que solicitará el Departamento de Servicios Escolares, posteriormente que se emita la carta de aceptación a la maestría.

TECNOLÓGICO NACIONAL DE MÉXICO

INSTITUTO TECNOLÓGICO DE PUEBLA

División de Estudios de Posgrado e Investigación

Maestría en Ingeniería Electrónica

Pertenece al Programa Nacional de Posgrados de Calidad Conacyt/PNPC Reg: 005413

Procedimiento para inscribirse al examen de admisión o al curso propedéutico:

1. Ingresar a http://www.itpuebla.edu.mx_jh_ En el menú:

Oferta educativa/Posgrados/Maestría en Ingeniería Electrónica/Proceso de admisión, descargar el manual "Captura de fichas para nuevo ingreso a Maestría 2020" y continuar con el procedimiento de inscripción.

- Documentos a entregar en la División de Estudios de Posgrado e Investigación.
- ·Currículum Vitae resumido.
- Carta de exposición de motivos

por los que desea ingresar a la Maestría (máximo 2 cuartillas)

Copia del certificado de licenciatura.

·Copia del título y cédula profesional o acta de examen profesional

Líneas de investigación

1. Modelado y control de sistemas de energía.

> 2. Sistemas mecatrónicos interactivos aplicados al control de procesos.

Curso propedéutico: \$3,000.00

• Examen de admisión: \$3,000.00

Inscripción a la maestría: \$7,000.00

Duración: 4 semestres

Informes:

1) Rubisel Tovilla Heredia

Coordinador de la Maestría en Ingeniería Electrónica cmie@itpuebla.edu.mx

2) Omar Flores Sánchez

Jefe de la División de Estudios de Posgrado e Investigación depi puebla@tecnm.mx

Horario de atención: 9 - 15 hrs. Edificio 29

Dirección:

Av. Tecnológico 420, Colonia Maravillas, C. P. 72220. Puebla, Pue.

Teléfono: 2222298824 v 16 http://www.itpuebla.edu.mx

Perfil del egresado

El graduado de la Maestría en Ingeniería Electrónica será competente de aplicar sus conocimientos de manera creativa e innovadora para la resolución de problemas en el campo de la tecnología, por lo que deberá contar con las siguientes habilidades:

- Ser capaz de plantear, organizar y administrar proyectos relacionados con instrumentación y control en sus distintos alcances y niveles.
- Analizar, modelar, diseñar y aplicar sistemas de instrumentación y control.
- Aplicar las técnicas diversas de instrumentación y control en la solución de problemas puntuales y reales en el sector industrial, comercial o público.
- Aplicar sobre ambientes donde se requiera de innovación y desarrollo tecnológico en: Caracterización, diseño y aplicación de sensores y actuadores para el control de procesos industriales.
- Desarrollo y aplicación de instrumentos analógicos, digitales y virtuales, según sea requerido.
- Propuesta de nuevas técnicas de medición y control de procesos.
- Modelado, simulación/emulación, verificación y control de procesos industriales.

Objetivo general

Profundizar en el conocimiento de la Ingeniería Electrónica mediante la formación de maestros con calidad académica, desarrollando habilidades para la solución de problemas en el medio ocupacional v satisfaciendo necesidades del sector productivo de bienes y servicios, estimulando la vinculación con los diversos sectores de la sociedad. principalmente en los ámbitos industrial, de docencia y en provectos de ingeniería, para participar en el desarrollo tecnológico.

Objetivos específicos

- Formar maestros en Ingeniería Electrónica de alto nivel, capaces de participar en el análisis y solución de problemas regionales y nacionales, utilizando métodos científicos y tecnológicos.
- Formar académicos de alto nivel comprometidos en el proceso enseñanza-aprendizaje.
- Impulsar la creación y transferencia tecnológicas en la región.
- Participar en el desarrollo de proyectos tecnológicos que resuelvan problemas relacionados con el sector productivo de la región.

Plan de estudios

El plan de estudios del programa de Maestría en Ingeniería Electrónica cubre un total de 100 créditos, en cuatro semestres distribuidos como se muestra a continuación:

Semestre I	Semestre II	Semestre III	Semestre IV
Básica I	Optativa I	Optativa IV	
Básica II	Optativa II	Optativa III	Tesis
Básica III			
Básica IV	Seminario de Tesis I	Seminario de Tesis II	Seminario de Tesis III
24 créditos	16 créditos	16 créditos	44 créditos

Cada estudiante tendrá un plan individual de actividades y de las asignaturas que debe cursar durante sus estudios. Dicho plan será definido en conjunto con su tutor y el Comité Tutorial Académico. A cada estudiante se le asignarán cuatro asignaturas básicas y cuatro asignaturas optativas. La asignación de materias a cursar dependerá del perfil del estudiante y del proyecto de tesis.

Asignaturas básicas:

- Matemáticas Avanzadas.
- Electrónica Analógica Avanzada.
- Electrónica Digital Avanzada.
- Teoría de Sistemas Lineales.

Asignaturas comunes:

- Seminario de Tesis I.
- Seminario de Tesis II.
- Seminario de Tesis III.
- Tesis.

Optativas. Modelado y control de sistemas de energía:

- Acondicionadores para Fuentes Renovables de Energía.
- Análisis de la Calidad de la Energía en Sistemas Eléctricos.
- Diseño de Sistemas Embebidos.

- Sistemas de Energía Renovable.
 Software Embebido.
 - Técnica de Control en Convertidores de Potencia.

Optativas. Sistemas mecatrónicos interactivos aplicado al control de procesos:

- ·Ingeniería de Proyectos Tecnológicos.
- Diseño de Sistemas Mecatróicos.
- ·Dispositivos Móviles.
- · Aplicaciones WEB para la Teleoperación.
- ·Visión Artificial.
- 'Procesamiento Digital de Imágenes.
- ·Robótica.
- ·Robótica Móvil.
- ·Planificación de Trayectorias.
- 'Automatización Industrial
- ·Control Secuencial